New Hilbert–Schmidt norm inequalities for positive semidefinite matrices

Let A and B be positive semidefinite matrices, and let X be any matrix. As a generalization of an earlier Hilbert–Schmidt norm inequality, we prove that A s X + X B 1 - s 2 2 + A 1 - s X + X B s 2 2 ≤ A t X + X B 1 - t 2 2 + A 1 - t X + X B t 2 2 for 1 2 ≤ s ≤ t ≤ 1 . We conjecture that this inequal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in operator theory 2023-04, Vol.8 (2), Article 23
Hauptverfasser: Hayajneh, Mostafa, Hayajneh, Saja, Kittaneh, Fuad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A and B be positive semidefinite matrices, and let X be any matrix. As a generalization of an earlier Hilbert–Schmidt norm inequality, we prove that A s X + X B 1 - s 2 2 + A 1 - s X + X B s 2 2 ≤ A t X + X B 1 - t 2 2 + A 1 - t X + X B t 2 2 for 1 2 ≤ s ≤ t ≤ 1 . We conjecture that this inequality is also true for all unitarily invariant norms, and we affirmatively settle this conjecture for the case s = 1 2 and t = 1 .
ISSN:2662-2009
2538-225X
DOI:10.1007/s43036-023-00251-3