New Hilbert–Schmidt norm inequalities for positive semidefinite matrices
Let A and B be positive semidefinite matrices, and let X be any matrix. As a generalization of an earlier Hilbert–Schmidt norm inequality, we prove that A s X + X B 1 - s 2 2 + A 1 - s X + X B s 2 2 ≤ A t X + X B 1 - t 2 2 + A 1 - t X + X B t 2 2 for 1 2 ≤ s ≤ t ≤ 1 . We conjecture that this inequal...
Gespeichert in:
Veröffentlicht in: | Advances in operator theory 2023-04, Vol.8 (2), Article 23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
and
B
be positive semidefinite matrices, and let
X
be any matrix. As a generalization of an earlier Hilbert–Schmidt norm inequality, we prove that
A
s
X
+
X
B
1
-
s
2
2
+
A
1
-
s
X
+
X
B
s
2
2
≤
A
t
X
+
X
B
1
-
t
2
2
+
A
1
-
t
X
+
X
B
t
2
2
for
1
2
≤
s
≤
t
≤
1
. We conjecture that this inequality is also true for all unitarily invariant norms, and we affirmatively settle this conjecture for the case
s
=
1
2
and
t
=
1
. |
---|---|
ISSN: | 2662-2009 2538-225X |
DOI: | 10.1007/s43036-023-00251-3 |