Estimates of the best approximations of the functions of the Nikol’skii–Besov class in the generalized space of Lorentz
In this paper, we consider the generalized Lorentz space of periodic functions of several variables and the Nikol’skii–Besov space of functions. The article establishes a sufficient condition for a function to belong from one generalized Lorentz space to another space in terms of the difference of t...
Gespeichert in:
Veröffentlicht in: | Advances in operator theory 2021, Vol.6 (1), Article 15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the generalized Lorentz space of periodic functions of several variables and the Nikol’skii–Besov space of functions. The article establishes a sufficient condition for a function to belong from one generalized Lorentz space to another space in terms of the difference of the partial sums of the Fourier series of a given function. Exact in order estimates of the best approximation by trigonometric polynomials of functions of the Nikol’skii–Besov class are obtained. |
---|---|
ISSN: | 2662-2009 2538-225X |
DOI: | 10.1007/s43036-020-00108-z |