A strong converse inequality for generalized sampling operators

We establish a two-term strong converse inequality for the rate of approximation of generalized sampling operators by means of the classical moduli of smoothness. It matches an already known direct estimate. We combine the direct and the converse estimates to derive the saturation property and class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of functional analysis 2022-07, Vol.13 (3), Article 36
Hauptverfasser: Acar, Tuncer, Draganov, Borislav R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a two-term strong converse inequality for the rate of approximation of generalized sampling operators by means of the classical moduli of smoothness. It matches an already known direct estimate. We combine the direct and the converse estimates to derive the saturation property and class of this approximation operator. We demonstrate the general results for the sampling operators generated by the central B-splines, linear combinations of translates of B-splines, and the Bochner–Riesz kernel.
ISSN:2639-7390
2008-8752
DOI:10.1007/s43034-022-00185-6