Doubly commuting invariant subspaces for representations of product systems of C∗-correspondences

We obtain a Shimorin Wold-type decomposition for a doubly commuting covariant representation of a product system of C ∗ -correspondences over N 0 k . This result gives Shimorin-type decompositions of recent Wold-type decompositions by Jeu and Pinto (Adv Math 368:107–149, 2020) for the q -doubly comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of functional analysis 2021-07, Vol.12 (3), Article 47
Hauptverfasser: Trivedi, Harsh, Veerabathiran, Shankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a Shimorin Wold-type decomposition for a doubly commuting covariant representation of a product system of C ∗ -correspondences over N 0 k . This result gives Shimorin-type decompositions of recent Wold-type decompositions by Jeu and Pinto (Adv Math 368:107–149, 2020) for the q -doubly commuting isometries and by Popescu (J Funct Anal 279:108798, 2020) for Doubly Λ -commuting row isometries. Application to the wandering subspaces of the induced representations is explored, and a version of the Beurling–Lax-type characterization is obtained to study doubly commuting invariant subspaces.
ISSN:2639-7390
2008-8752
DOI:10.1007/s43034-021-00136-7