Doubly commuting invariant subspaces for representations of product systems of C∗-correspondences
We obtain a Shimorin Wold-type decomposition for a doubly commuting covariant representation of a product system of C ∗ -correspondences over N 0 k . This result gives Shimorin-type decompositions of recent Wold-type decompositions by Jeu and Pinto (Adv Math 368:107–149, 2020) for the q -doubly comm...
Gespeichert in:
Veröffentlicht in: | Annals of functional analysis 2021-07, Vol.12 (3), Article 47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a Shimorin Wold-type decomposition for a doubly commuting covariant representation of a product system of
C
∗
-correspondences over
N
0
k
. This result gives Shimorin-type decompositions of recent Wold-type decompositions by Jeu and Pinto (Adv Math 368:107–149, 2020) for the
q
-doubly commuting isometries and by Popescu (J Funct Anal 279:108798, 2020) for Doubly
Λ
-commuting row isometries. Application to the wandering subspaces of the induced representations is explored, and a version of the Beurling–Lax-type characterization is obtained to study doubly commuting invariant subspaces. |
---|---|
ISSN: | 2639-7390 2008-8752 |
DOI: | 10.1007/s43034-021-00136-7 |