On the $$c_0$$-equivalence and permutations of series
Assume that a convergent series of real numbers $$\sum \limits _{n=1}^\infty a_n$$ ∑ n = 1 ∞ a n has the property that there exists a set $$A\subseteq {\mathbb {N}}$$ A ⊆ N such that the series $$\sum \limits _{n \in A} a_n$$ ∑ n ∈ A a n is conditionally convergent. We prove that for a given arbitra...
Gespeichert in:
Veröffentlicht in: | Annals of functional analysis 2021-04, Vol.12 (2), Article 23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that a convergent series of real numbers
$$\sum \limits _{n=1}^\infty a_n$$
∑
n
=
1
∞
a
n
has the property that there exists a set
$$A\subseteq {\mathbb {N}}$$
A
⊆
N
such that the series
$$\sum \limits _{n \in A} a_n$$
∑
n
∈
A
a
n
is conditionally convergent. We prove that for a given arbitrary sequence
$$(b_n)$$
(
b
n
)
of real numbers there exists a permutation
$$\sigma :{\mathbb {N}}\rightarrow {\mathbb {N}}$$
σ
:
N
→
N
such that
$$\sigma (n) = n$$
σ
(
n
)
=
n
for every
$$n \notin A$$
n
∉
A
and
$$(b_n)$$
(
b
n
)
is
$$c_0$$
c
0
-equivalent to a subsequence of the sequence of partial sums of the series
$$\sum \limits _{n=1}^\infty a_{\sigma (n)}$$
∑
n
=
1
∞
a
σ
(
n
)
. Moreover, we discuss a connection between our main result with the classical Riemann series theorem. |
---|---|
ISSN: | 2639-7390 2008-8752 |
DOI: | 10.1007/s43034-020-00109-2 |