Local bounds of the gradient of weak solutions to the porous medium equation
Let u be a nonnegative, local, weak solution to the porous medium equation ∂ t u - Δ u m = 0 for m ≥ 2 in a space-time cylinder Ω T = Ω × ( 0 , T ] . Fix a point ( x o , t o ) ∈ Ω T : if the average then the quantity | ∇ u m - 1 | is locally bounded in a proper cylinder, whose center lies at time t...
Gespeichert in:
Veröffentlicht in: | SN partial differential equations and applications 2023-04, Vol.4 (2), Article 8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
u
be a nonnegative, local, weak solution to the porous medium equation
∂
t
u
-
Δ
u
m
=
0
for
m
≥
2
in a space-time cylinder
Ω
T
=
Ω
×
(
0
,
T
]
. Fix a point
(
x
o
,
t
o
)
∈
Ω
T
: if the average
then the quantity
|
∇
u
m
-
1
|
is locally bounded in a proper cylinder, whose center lies at time
t
o
+
a
1
-
m
r
2
. This implies that in the same cylinder the solution
u
is Hölder continuous with exponent
α
=
1
m
-
1
, which is known to be optimal. Moreover,
u
presents a sort of instantaneous regularization, which we discuss. |
---|---|
ISSN: | 2662-2963 2662-2971 |
DOI: | 10.1007/s42985-022-00217-9 |