Transition-Metal (Fe, Co, and Ni)-Based Nanofiber Electrocatalysts for Water Splitting
Electrochemical water splitting is a fascinating technology for sustainable hydrogen production, and electrocatalysts are essential to accelerate the sluggish hydrogen and oxygen evolution reactions (HER and OER). Transition-metal-based electrocatalysts have attracted enormous interests due to the a...
Gespeichert in:
Veröffentlicht in: | Advanced fiber materials (Online) 2021-08, Vol.3 (4), p.210-228 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical water splitting is a fascinating technology for sustainable hydrogen production, and electrocatalysts are essential to accelerate the sluggish hydrogen and oxygen evolution reactions (HER and OER). Transition-metal-based electrocatalysts have attracted enormous interests due to the abundant resources, low cost, and comparable catalytic performance to noble metals. Among these studies, fibrous materials possess distinct advantages, such as unique structure, high active surface area, and fast electron transport. Herein, the most recent progress of nanofiber electrocatalysts on synthesis and application in HER and OER is summarized, with emphasis on iron-, cobalt-, and nickel-based materials. Moreover, the challenge and prospects of fibrous-structured electrocatalysts on water splitting is provided.
Graphic abstract |
---|---|
ISSN: | 2524-7921 2524-793X |
DOI: | 10.1007/s42765-021-00065-z |