Numerical Methods for Efficient Fluid–Structure Interaction Simulations of Paragliders
After specifying the general context and needs of the paragliding industry, a new model to compute paraglider cloth dynamics is presented. Applications in research and development are then shown. Results are very promising: using simulations is drastically changing the way paragliders are being deve...
Gespeichert in:
Veröffentlicht in: | Aerotecnica, missili e spazio missili e spazio, 2019-09, Vol.98 (3), p.221-229 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After specifying the general context and needs of the paragliding industry, a new model to compute paraglider cloth dynamics is presented. Applications in research and development are then shown. Results are very promising: using simulations is drastically changing the way paragliders are being developed. Then the firsts steps towards the use of immersed boundaries with Lattice Boltzmann method for the highly coupled, transient high fidelity fluid–structure interaction simulation of paragliders are presented. Despite strong bias due to under-resolved boundary layers, numerical results of the cloth deformations are in an acceptable agreement with wind tunnel measurements conducted in a previous study on a small and simple parachute geometry. |
---|---|
ISSN: | 0365-7442 2524-6968 |
DOI: | 10.1007/s42496-019-00017-2 |