Analysis and synthesis of feature map for kernel-based quantum classifier

A method for analyzing the feature map for the kernel-based quantum classifier is developed; that is, we give a general formula for computing a lower bound of the exact training accuracy, which helps us to see whether the selected feature map is suitable for linearly separating the dataset. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum machine intelligence 2020-06, Vol.2 (1), Article 9
Hauptverfasser: Suzuki, Yudai, Yano, Hiroshi, Gao, Qi, Uno, Shumpei, Tanaka, Tomoki, Akiyama, Manato, Yamamoto, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for analyzing the feature map for the kernel-based quantum classifier is developed; that is, we give a general formula for computing a lower bound of the exact training accuracy, which helps us to see whether the selected feature map is suitable for linearly separating the dataset. We show a proof of concept demonstration of this method for a class of 2-qubit classifier, with several 2-dimensional datasets. Also, a synthesis method, which combines different kernels to construct a better-performing feature map in a lager feature space, is presented.
ISSN:2524-4906
2524-4914
DOI:10.1007/s42484-020-00020-y