Landing Dynamic Analysis for Landing Leg of Lunar Lander Using Nonlinear Finite Element Method
To accurately determine the loads and energy absorption capability, which plays a vital role in the design and optimization process of a new landing gear system for a lunar lander, a new approach of landing impact dynamic analysis using nonlinear finite element method is developed. Abaqus/Explicit i...
Gespeichert in:
Veröffentlicht in: | Advances in astronautics science and technology (Online) 2022-09, Vol.5 (3), p.235-240 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To accurately determine the loads and energy absorption capability, which plays a vital role in the design and optimization process of a new landing gear system for a lunar lander, a new approach of landing impact dynamic analysis using nonlinear finite element method is developed. Abaqus/Explicit is selected to simulate the soft-landing event for its excellent nonlinear, transient dynamics capabilities. The aluminum honeycomb shock absorber model is established by plastic crushable foam material model and the lunar soil is built by Drucker–Prager/Cap material model. Finally, the load at connector between structure and landing gear and acceleration response of structure and dissipated energy by the shock absorber and lunar soil are presented. |
---|---|
ISSN: | 2524-5252 2524-5260 |
DOI: | 10.1007/s42423-022-00120-w |