Cleaning and coating procedures determine biological properties of gyroid porous titanium implants
Cleaning and coating processes as well as biocompatibility of gyroid commercially pure titanium (Cp-Ti) biomedical implants using the laser powder bed fusion (L-PBF) technology were analyzed. Etching time for cleaning of gyroid Cp-Ti biomedical implants were determined to remove non-melted particles...
Gespeichert in:
Veröffentlicht in: | Emergent materials (Online) 2024-07, Vol.7 (6), p.2711-2729 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cleaning and coating processes as well as biocompatibility of gyroid commercially pure titanium (Cp-Ti) biomedical implants using the laser powder bed fusion (L-PBF) technology were analyzed. Etching time for cleaning of gyroid Cp-Ti biomedical implants were determined to remove non-melted particles from the surface. Nano hydroxyapatite (nHA) and polylactic acid (PLA) composite coating on the gyroid Cp-Ti implants via dip coating were optimized. Dip coating’s withdrawal speed also, the amount of nHA:PLA and viscosity effects of composite were evaluated. 1000 mm/min withdrawal speed prevented clogging of the pores. In addition, silk fibroin was coated on gyroid Cp-Ti implants with electro deposition method. Optimum coating thicknesses were achieved. Biocompatibility after PLA:nHA and silk fibroin were studied. Gyroid and solid Cp-Ti presented 3% and 1% mass loss after a minute of HF/HNO
3
etching. The three-minute etching protocol led to the highest micro pit width formation on the surfaces. 70:30 PLA:nHA and silk fibroin established crack-free coatings on gyroid Cp-Ti surfaces. MTT, live-dead cell assay revealed good biocompatibility after coating. |
---|---|
ISSN: | 2522-5731 2522-574X |
DOI: | 10.1007/s42247-024-00774-2 |