Whole process prediction model of silicon steel strip on transverse thickness difference based on Takagi-Sugeno fuzzy network
The hot rolling and cold rolling control models of silicon steel strip were examined. Shape control of silicon steel strip of hot rolling was a theoretical analysis model, and the shape control of cold rolling was a data-based prediction model. The mathematical model of the hot-rolled silicon steel...
Gespeichert in:
Veröffentlicht in: | Journal of iron and steel research, international international, 2023-12, Vol.30 (12), p.2448-2458 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hot rolling and cold rolling control models of silicon steel strip were examined. Shape control of silicon steel strip of hot rolling was a theoretical analysis model, and the shape control of cold rolling was a data-based prediction model. The mathematical model of the hot-rolled silicon steel section, including the crown genetic model, inter-stand crown recovery model, and hot-rolled strip section prediction model, is used to control the shape of hot-rolled strip. The cold rolling shape control is mainly based on Takagi-Sugeno fuzzy network, which is used to simulate and predict the transverse thickness difference of cold-rolled silicon steel strip. Finally, a predictive model for the transverse thickness difference of silicon steel strips is developed to provide a new quality control method of transverse thickness of combined hot and cold rolling to improve the strip profile quality and increase economic efficiency. The qualified rate of the non-oriented silicon steel strip is finally obtained by applying this model, and it has been steadily upgraded to meet the needs of product quality and flexible production. |
---|---|
ISSN: | 1006-706X 2210-3988 |
DOI: | 10.1007/s42243-023-01094-1 |