Simulator Coupled with Distributed Co-Simulation Protocol for Automated Driving Tests
To meet the challenges in software testing for automated vehicles, such as increasing system complexity and an infinite number of operating scenarios, new simulation methods must be developed. Closed-loop simulations for automated driving (AD) require highly complex simulation models for multiple co...
Gespeichert in:
Veröffentlicht in: | Automotive Innovation 2021-11, Vol.4 (4), p.373-389 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To meet the challenges in software testing for automated vehicles, such as increasing system complexity and an infinite number of operating scenarios, new simulation methods must be developed. Closed-loop simulations for automated driving (AD) require highly complex simulation models for multiple controlled vehicles with their perception systems as well as their surrounding context. For the realization of such models, different simulation domains must be coupled with co-simulation. However, widely supported model integration standards such as functional mock-up interface (FMI) lack native support for distributed platforms, which is a key feature for AD due to the computational intensity and platform exclusivity of certain models. The newer FMI companion standard distributed co-simulation protocol (DCP) introduces platform coupling but must still be used in conjunction with AD co-simulations. As part of an assessment framework for AD, this paper presents a DCP compliant implementation of an interoperable interface between a 3D environment and vehicle simulator and a co-simulation platform. A universal Python wrapper is implemented and connected to the simulator to allow its control as a DCP slave. A C-code-based interface enables the co-simulation platform to act as a DCP master and to realize cross-platform data exchange and time synchronization of the environment simulation with other integrated models. A model-in-the-loop use case is performed with the traffic simulator CARLA running on a Linux machine connected to the co-simulation master xMOD on a Windows computer via DCP. Several virtual vehicles are successfully controlled by cooperative adaptive cruise controllers executed outside of CARLA. The standard compliance of the implementation is verified by exemplary connection to prototypic DCP solutions from 3rd party vendors. This exemplary application demonstrates the benefits of DCP compliant tool coupling for AD simulation with increased tool interoperability, reuse potential, and performance. |
---|---|
ISSN: | 2096-4250 2522-8765 |
DOI: | 10.1007/s42154-021-00161-1 |