Optimal stable Ornstein–Uhlenbeck regression

We prove asymptotically efficient inference results concerning an Ornstein–Uhlenbeck regression model driven by a non-Gaussian stable Lévy process, where the output process is observed at high frequency over a fixed period. The local asymptotics of non-ergodic type for the likelihood function is pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese journal of statistics and data science 2023-06, Vol.6 (1), p.573-605
1. Verfasser: Masuda, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove asymptotically efficient inference results concerning an Ornstein–Uhlenbeck regression model driven by a non-Gaussian stable Lévy process, where the output process is observed at high frequency over a fixed period. The local asymptotics of non-ergodic type for the likelihood function is presented, followed by a way to construct an asymptotically efficient estimator through a suboptimal, yet very simple preliminary estimator.
ISSN:2520-8756
2520-8764
DOI:10.1007/s42081-023-00197-z