On the Computation of the Cohomological Invariants of Bott–Samelson Resolutions of Schubert Varieties

Let X ⊆ G / B be a Schubert variety in a flag manifold and let π : X ~ → X be a Bott–Samelson resolution of X . In this paper, we prove an effective version of the decomposition theorem for the derived pushforward R π ∗ Q X ~ . As a by-product, we obtain recursive procedure to extract Kazhdan–Luszti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2024-08, Vol.50 (4), Article 48
1. Verfasser: Franco, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X ⊆ G / B be a Schubert variety in a flag manifold and let π : X ~ → X be a Bott–Samelson resolution of X . In this paper, we prove an effective version of the decomposition theorem for the derived pushforward R π ∗ Q X ~ . As a by-product, we obtain recursive procedure to extract Kazhdan–Lusztig polynomials from the polynomials introduced by Deodhar [ 7 ], which does not require prior knowledge of a minimal set. We also observe that any family of equivariant resolutions of Schubert varieties allows to define a new basis in the Hecke algebra and we show a way to compute the transition matrix, from the Kazhdan–Lusztig basis to the new one.
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-024-00887-8