On the Computation of the Cohomological Invariants of Bott–Samelson Resolutions of Schubert Varieties
Let X ⊆ G / B be a Schubert variety in a flag manifold and let π : X ~ → X be a Bott–Samelson resolution of X . In this paper, we prove an effective version of the decomposition theorem for the derived pushforward R π ∗ Q X ~ . As a by-product, we obtain recursive procedure to extract Kazhdan–Luszti...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Iranian Mathematical Society 2024-08, Vol.50 (4), Article 48 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
⊆
G
/
B
be a Schubert variety in a flag manifold and let
π
:
X
~
→
X
be a Bott–Samelson resolution of
X
. In this paper, we prove an effective version of the decomposition theorem for the derived pushforward
R
π
∗
Q
X
~
. As a by-product, we obtain recursive procedure to extract Kazhdan–Lusztig polynomials from the polynomials introduced by Deodhar [
7
], which does not require prior knowledge of a minimal set. We also observe that any family of equivariant resolutions of Schubert varieties allows to define a new basis in the Hecke algebra and we show a way to compute the transition matrix, from the Kazhdan–Lusztig basis to the new one. |
---|---|
ISSN: | 1017-060X 1735-8515 |
DOI: | 10.1007/s41980-024-00887-8 |