Embedding Dimensions of Matrices Whose Entries are Indefinite Distances in the Pseudo-Euclidean Space
A finite set of the Euclidean space is called an s -distance set provided that the number of Euclidean distances in the set is s . Determining the largest possible s -distance set for the Euclidean space of a given dimension is challenging. This problem was solved only when dealing with small values...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Iranian Mathematical Society 2024-02, Vol.50 (1), Article 5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite set of the Euclidean space is called an
s
-distance set provided that the number of Euclidean distances in the set is
s
. Determining the largest possible
s
-distance set for the Euclidean space of a given dimension is challenging. This problem was solved only when dealing with small values of
s
and dimensions. Lisoněk (J Combin Theory Ser A 77(2):318–338, 1997) achieved the classification of the largest 2-distance sets for dimensions up to 7, using computer assistance and graph representation theory. In this study, we consider a theory analogous to these results of Lisoněk for the pseudo-Euclidean space
R
p
,
q
. We consider an
s
-indefinite-distance set in a pseudo-Euclidean space that uses the value
|
|
x
-
y
|
|
=
(
x
1
-
y
1
)
2
+
⋯
+
(
x
p
-
y
p
)
2
-
(
x
p
+
1
-
y
p
+
1
)
2
-
⋯
-
(
x
p
+
q
-
y
p
+
q
)
2
instead of the Euclidean distance. We develop a representation theory for symmetric matrices in the context of
s
-indefinite-distance sets, which includes or improves the results of Euclidean
s
-distance sets with large
s
values. Moreover, we classify the largest possible 2-indefinite-distance sets for small dimensions. |
---|---|
ISSN: | 1017-060X 1735-8515 |
DOI: | 10.1007/s41980-023-00842-z |