Partial Order in Matrix Nearrings

Let N be a zero-symmetric (right) nearring with identity. We introduce a partial order in the matrix nearring corresponding to the partial order (defined by Pilz in Near-rings: the theory and its applications, North Holland, Amsterdam, 1983) in N . A positive cone in a matrix nearring is defined and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2022-12, Vol.48 (6), p.3195-3209
Hauptverfasser: Sahoo, Tapatee, Meyer, Johannes Hendrik, Panackal, Harikrishnan, Srinivas, Kedukodi Babushri, Prasad, Kuncham Syam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let N be a zero-symmetric (right) nearring with identity. We introduce a partial order in the matrix nearring corresponding to the partial order (defined by Pilz in Near-rings: the theory and its applications, North Holland, Amsterdam, 1983) in N . A positive cone in a matrix nearring is defined and a characterization theorem is obtained. For a convex ideal I in N , we prove that the corresponding ideal I ∗ is convex in M n ( N ) , and conversely, if I is convex in M n ( N ) , then I ∗ is convex in N . Consequently, we establish an order-preserving isomorphism between the p.o. quotient matrix nearrings M n ( N ) / I ∗ and M n ( N ′ ) / ( I ′ ) ∗ where I and I ′ are the convex ideals of p.o. nearrings N and N ′ , respectively. Finally, we prove some properties of Archimedean ordering in matrix nearrings corresponding to those in nearrings.
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-022-00689-w