Non-global Nonlinear Lie Triple Derivable Maps on Finite von Neumann Algebras
Let M be a finite von Neumann algebra with no central summands of type I 1 . Assume that δ : M → M is a nonlinear map satisfying δ ( [ [ A , B ] , C ] ) = [ [ δ ( A ) , B ] , C ] + [ [ A , δ ( B ) ] , C ] + [ [ A , B ] , δ ( C ) ] for any A , B , C ∈ M with A B C = 0 . Then, we prove that there exis...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Iranian Mathematical Society 2021-12, Vol.47 (Suppl 1), p.307-322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
be a finite von Neumann algebra with no central summands of type
I
1
. Assume that
δ
:
M
→
M
is a nonlinear map satisfying
δ
(
[
[
A
,
B
]
,
C
]
)
=
[
[
δ
(
A
)
,
B
]
,
C
]
+
[
[
A
,
δ
(
B
)
]
,
C
]
+
[
[
A
,
B
]
,
δ
(
C
)
]
for any
A
,
B
,
C
∈
M
with
A
B
C
=
0
. Then, we prove that there exists an additive derivation
d
:
M
→
M
, such that
δ
(
A
)
=
d
(
A
)
+
τ
(
A
)
for any
A
∈
M
, where
τ
:
M
→
Z
M
is a nonlinear map, such that
τ
(
[
[
A
,
B
]
,
C
]
)
=
0
for any
A
,
B
,
C
∈
M
with
A
B
C
=
0
. |
---|---|
ISSN: | 1017-060X 1735-8515 |
DOI: | 10.1007/s41980-020-00493-4 |