Non-global Nonlinear Lie Triple Derivable Maps on Finite von Neumann Algebras

Let M be a finite von Neumann algebra with no central summands of type I 1 . Assume that δ : M → M is a nonlinear map satisfying δ ( [ [ A , B ] , C ] ) = [ [ δ ( A ) , B ] , C ] + [ [ A , δ ( B ) ] , C ] + [ [ A , B ] , δ ( C ) ] for any A , B , C ∈ M with A B C = 0 . Then, we prove that there exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2021-12, Vol.47 (Suppl 1), p.307-322
Hauptverfasser: Zhao, Xingpeng, Hao, Haixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a finite von Neumann algebra with no central summands of type I 1 . Assume that δ : M → M is a nonlinear map satisfying δ ( [ [ A , B ] , C ] ) = [ [ δ ( A ) , B ] , C ] + [ [ A , δ ( B ) ] , C ] + [ [ A , B ] , δ ( C ) ] for any A , B , C ∈ M with A B C = 0 . Then, we prove that there exists an additive derivation d : M → M , such that δ ( A ) = d ( A ) + τ ( A ) for any A ∈ M , where τ : M → Z M is a nonlinear map, such that τ ( [ [ A , B ] , C ] ) = 0 for any A , B , C ∈ M with A B C = 0 .
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-020-00493-4