A Note on Generalized Jordan ∗-Derivations on Prime ∗-Rings
Let R be an associative ring with involution ∗ . In this paper, we study an additive mapping F : R → R , namely generalized Jordan ∗ -derivation, satisfying F ( x 2 ) = F ( x ) x ∗ + x D ( x ) for any x ∈ R associated with a Jordan ∗ -derivation D on R . It is shown that, in case R as a prime ∗ -rin...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Iranian Mathematical Society 2021-04, Vol.47 (2), p.403-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be an associative ring with involution
∗
. In this paper, we study an additive mapping
F
:
R
→
R
, namely generalized Jordan
∗
-derivation, satisfying
F
(
x
2
)
=
F
(
x
)
x
∗
+
x
D
(
x
)
for any
x
∈
R
associated with a Jordan
∗
-derivation
D
on
R
. It is shown that, in case
R
as a prime
∗
-ring with char
(
R
)
≠
2
,
F
is of the form
F
(
x
)
=
q
x
∗
+
D
(
x
)
for any
x
∈
R
. In the spirit of this result, we discuss the celebrated Posner’s [
27
] second theorem and other results in the setting of generalized Jordan
∗
-derivations. |
---|---|
ISSN: | 1017-060X 1735-8515 |
DOI: | 10.1007/s41980-020-00390-w |