An Uncertain Exponential Ornstein–Uhlenbeck Interest Rate Model with Uncertain CIR Volatility
Assuming that the volatility process follows the uncertain Cox–Ingersoll–Ross (CIR) model, this paper presents a new version of the uncertain exponential Ornstein–Uhlenbeck interest rate model. The prices of the interest rate ceiling and the interest rate floor based on the model are derived using t...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Iranian Mathematical Society 2020-10, Vol.46 (5), p.1405-1420 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assuming that the volatility process follows the uncertain Cox–Ingersoll–Ross (CIR) model, this paper presents a new version of the uncertain exponential Ornstein–Uhlenbeck interest rate model. The prices of the interest rate ceiling and the interest rate floor based on the model are derived using the Yao–Chen formula. Some algorithms are designed to calculate the prices of these derivatives numerically. We present some numerical experiments which illustrate the behaviour of the proposed model. |
---|---|
ISSN: | 1017-060X 1735-8515 |
DOI: | 10.1007/s41980-019-00332-1 |