Independent Double Roman Domination in Graphs

For a graph G = ( V , E ) , a double Roman dominating function (DRDF) on G is a function f : V → { 0 , 1 , 2 , 3 } having the property that if f ( v ) = 0 , then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f ( w ) = 3 , and if f ( v ) = 1 , then vertex v has at leas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2020-04, Vol.46 (2), p.543-555
Hauptverfasser: Maimani, Hamidreza, Momeni, Mostafa, Nazari Moghaddam, Sakineh, Rahimi Mahid, Farhad, Sheikholeslami, Seyed Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a graph G = ( V , E ) , a double Roman dominating function (DRDF) on G is a function f : V → { 0 , 1 , 2 , 3 } having the property that if f ( v ) = 0 , then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f ( w ) = 3 , and if f ( v ) = 1 , then vertex v has at least one neighbor w with f ( w ) ≥ 2 . A DRDF f is called an independent double Roman dominating function (IDRDF) if the set of vertices with positive weight is independent. The weight of an IDRDF is the sum f ( V ) = ∑ v ∈ V f ( v ) . The independent double Roman domination number i dR ( G ) is the minimum weight of an IDRDF on G . In this paper, we initiate the study of independent double Roman domination. We first show that the decision problem associated with i dR ( G ) is NP-complete for bipartite graphs and then we present some sharp bounds on the independent double Roman domination number.
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-019-00274-8