Forms and Chern Classes on Hermitian Lie Algebroids

In this paper, we study Hermitian Lie algebroids and introduce the notion of Chern A -connection on Hermitian vector bundles. Then, we prove that on every holomorphic vector bundle there exists a unique Chern A -connection and find its connection form and curvature form. Also, we generalize Weitzenb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2020-02, Vol.46 (1), p.19-36
Hauptverfasser: Pirbodaghi, Zahra, Rezaii, Morteza Mirmohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study Hermitian Lie algebroids and introduce the notion of Chern A -connection on Hermitian vector bundles. Then, we prove that on every holomorphic vector bundle there exists a unique Chern A -connection and find its connection form and curvature form. Also, we generalize Weitzenböck’s formula to complex Lie algebroids and prove vanishing theorem for holomorphic sections. Moreover, we extend the Chern classes in complex geometry to Lie algebroids framework.
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-019-00238-y