Chain Mixing, Shadowing Properties and Multi-transitivity

We prove that a map f is chain mixing if and only if f r × f s is chain transitive for some positive integers r ,  s . We prove that a map which has the average shadowing property with dense 0 ̲ -recurrent points is transitive, and by this result we point out that a map is multi-transitive if it has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2019-12, Vol.45 (6), p.1605-1618
Hauptverfasser: Wang, Huoyun, Fu, Heman, Diao, Sulan, Zeng, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a map f is chain mixing if and only if f r × f s is chain transitive for some positive integers r ,  s . We prove that a map which has the average shadowing property with dense 0 ̲ -recurrent points is transitive, and by this result we point out that a map is multi-transitive if it has the average shadowing property and an invariant Borel probability measure with full support. Moreover, we show that Δ -mixing, the completely uniform positive entropy and the average shadowing property are equivalent mutually for a surjective map which has the shadowing property.
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-019-00218-2