A Riemann-Type Theorem for Segmentally Alternating Series

We show that given any divergent series ∑ a n with positive terms converging to 0 and any interval [ α , β ] ⊂ R ¯ , there are continuum many segmentally alternating sign distributions ( ϵ n ) such that the set of accumulation points of the sequence of the partial sums of the series ∑ ϵ n a n is exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Iranian Mathematical Society 2018-10, Vol.44 (5), p.1303-1314
Hauptverfasser: Banakiewicz, Michał, Hanson, Bruce, Pierce, Pamela, Prus-Wiśniowski, Franciszek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that given any divergent series ∑ a n with positive terms converging to 0 and any interval [ α , β ] ⊂ R ¯ , there are continuum many segmentally alternating sign distributions ( ϵ n ) such that the set of accumulation points of the sequence of the partial sums of the series ∑ ϵ n a n is exactly the interval [ α , β ] . We add some remarks on various segmentations of series with mixed sign terms in order to strengthen a sufficient criterion for convergence of such series.
ISSN:1017-060X
1735-8515
DOI:10.1007/s41980-018-0092-z