Effective segmentation of land-use and land-cover from hyperspectral remote sensing image
Hyperspectral images (HSI) provide valuable data for Land-Use and Land-Cover (LU/LC) segmentation. Detecting buildings, roads, and LU/LC labels in satellite images is crucial for various applications. This research introduces a method combining Hybrid Dynamic Arithmetic Edge Detection with Bi-direct...
Gespeichert in:
Veröffentlicht in: | International journal of information technology (Singapore. Online) 2024-04, Vol.16 (4), p.2395-2412 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperspectral images (HSI) provide valuable data for Land-Use and Land-Cover (LU/LC) segmentation. Detecting buildings, roads, and LU/LC labels in satellite images is crucial for various applications. This research introduces a method combining Hybrid Dynamic Arithmetic Edge Detection with Bi-directional Long Short-Term Memory UNet (BiLSTMUNet) for segmentation. Initially, enhance the image quality with an Approximate Adaptive Noise Variance Wiener filtering technique (AANVW), and perform dynamic spatial-spectral feature extraction on pre-processed images. The proposed segmentation system is a hybrid of Arithmetic Optimization (AO) and BiLSTMUNet, reducing the entropy loss function. Then, processed a substantial amount of remote sensing images to achieve improved LU/LC segmentation. Results show the effectiveness of BiLSTMUNet with an accuracy of 98.5% on EuroSAT and 97.5% on DeepGlobe datasets. This approach holds promise for accurate and efficient high-resolution remote sensing image analysis. |
---|---|
ISSN: | 2511-2104 2511-2112 |
DOI: | 10.1007/s41870-023-01711-y |