Effective segmentation of land-use and land-cover from hyperspectral remote sensing image

Hyperspectral images (HSI) provide valuable data for Land-Use and Land-Cover (LU/LC) segmentation. Detecting buildings, roads, and LU/LC labels in satellite images is crucial for various applications. This research introduces a method combining Hybrid Dynamic Arithmetic Edge Detection with Bi-direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information technology (Singapore. Online) 2024-04, Vol.16 (4), p.2395-2412
Hauptverfasser: Yele, Vijaykumar P., Alegavi, Sujata, Sedamkar, R. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral images (HSI) provide valuable data for Land-Use and Land-Cover (LU/LC) segmentation. Detecting buildings, roads, and LU/LC labels in satellite images is crucial for various applications. This research introduces a method combining Hybrid Dynamic Arithmetic Edge Detection with Bi-directional Long Short-Term Memory UNet (BiLSTMUNet) for segmentation. Initially, enhance the image quality with an Approximate Adaptive Noise Variance Wiener filtering technique (AANVW), and perform dynamic spatial-spectral feature extraction on pre-processed images. The proposed segmentation system is a hybrid of Arithmetic Optimization (AO) and BiLSTMUNet, reducing the entropy loss function. Then, processed a substantial amount of remote sensing images to achieve improved LU/LC segmentation. Results show the effectiveness of BiLSTMUNet with an accuracy of 98.5% on EuroSAT and 97.5% on DeepGlobe datasets. This approach holds promise for accurate and efficient high-resolution remote sensing image analysis.
ISSN:2511-2104
2511-2112
DOI:10.1007/s41870-023-01711-y