Existence results for some nonlinear elliptic equations via topological degree methods

This article is devoted to study the existence of weak solutions to a Dirichlet boundary value problem related to the following nonlinear elliptic equation - d i v a ( x , u , ∇ u ) - λ g ( x , u , ∇ u ) = b ( x ) | u | q - 2 u , where - d i v a ( x , u , ∇ u ) is a Leray-Lions operator acting from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elliptic and parabolic equations 2021-06, Vol.7 (1), p.121-136
Hauptverfasser: Abbassi, Adil, Allalou, Chakir, Kassidi, Abderrazak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is devoted to study the existence of weak solutions to a Dirichlet boundary value problem related to the following nonlinear elliptic equation - d i v a ( x , u , ∇ u ) - λ g ( x , u , ∇ u ) = b ( x ) | u | q - 2 u , where - d i v a ( x , u , ∇ u ) is a Leray-Lions operator acting from W 0 1 , p ( Ω , w ) to its dual W - 1 , p ′ ( Ω , w ∗ ) . On the nonlinear term g ( x , s , η ) , we only assume the growth condition on η . Our approach is based on the topological degree introduced by Berkovits.
ISSN:2296-9020
2296-9039
DOI:10.1007/s41808-021-00098-w