Existence results for some nonlinear elliptic equations via topological degree methods
This article is devoted to study the existence of weak solutions to a Dirichlet boundary value problem related to the following nonlinear elliptic equation - d i v a ( x , u , ∇ u ) - λ g ( x , u , ∇ u ) = b ( x ) | u | q - 2 u , where - d i v a ( x , u , ∇ u ) is a Leray-Lions operator acting from...
Gespeichert in:
Veröffentlicht in: | Journal of elliptic and parabolic equations 2021-06, Vol.7 (1), p.121-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article is devoted to study the existence of weak solutions to a Dirichlet boundary value problem related to the following nonlinear elliptic equation
-
d
i
v
a
(
x
,
u
,
∇
u
)
-
λ
g
(
x
,
u
,
∇
u
)
=
b
(
x
)
|
u
|
q
-
2
u
,
where
-
d
i
v
a
(
x
,
u
,
∇
u
)
is a Leray-Lions operator acting from
W
0
1
,
p
(
Ω
,
w
)
to its dual
W
-
1
,
p
′
(
Ω
,
w
∗
)
. On the nonlinear term
g
(
x
,
s
,
η
)
, we only assume the growth condition on
η
. Our approach is based on the topological degree introduced by Berkovits. |
---|---|
ISSN: | 2296-9020 2296-9039 |
DOI: | 10.1007/s41808-021-00098-w |