Surface and Adhesion Characteristics of Current and Next Generation Steel Packaging Materials

Steel packaging remains an important mean by which foodstuffs and other products can be stored safely for a prolonged period of time. The industry is being challenged by the dual legislative pressures which require the elimination of Chrome (VI) from the manufacturing process and the elimination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of packaging technology and research 2018-07, Vol.2 (2), p.93-103
Hauptverfasser: Melvin, Christopher, Jewell, Eifion, de Vooys, Arnoud, Lammers, Koen, Murray, Neil Mc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steel packaging remains an important mean by which foodstuffs and other products can be stored safely for a prolonged period of time. The industry is being challenged by the dual legislative pressures which require the elimination of Chrome (VI) from the manufacturing process and the elimination of bisphenol A as a component from the lacquer system. Initial indications suggest lower adhesive performance, and it has been postulated that thermal treatment may be a mean of improving adhesion. Three substrates (two current and one future) were physically and chemically characterized prior and post treatment and the resultant impact of adhesion was quantified. The net impact of the thermal treatment is that it increases the adhesion of the lacquer on the surface. As there is minimal change in the physical characteristics of the surface, the authors propose that this is a result of changes in the chemical surface species, particularly the increase in the oxidic nature of each of the substrates which provides additional bonding sites for the organic species in the lacquer. These trends are observed for current substrate materials as well as next generation Chrome VI free substrate. Next generation replacement substrate materials perform better than current materials for dry adhesion while next generation bisphenol A non-intent lacquer materials perform poorer than the current epoxy phenolic materials.
ISSN:2520-1034
2520-1042
DOI:10.1007/s41783-018-0031-8