Simulation of Dielectric Axion Haloscopes with Deep Neural Networks: A Proof-of-Principle

Dielectric axion haloscopes, such as the Madmax experiment, are promising concepts for the direct search for dark matter axions. A reliable simulation is a fundamental requirement for the successful realisation of the experiments. Due to the complexity of the simulations, the demands on computing re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing and software for big science 2022-12, Vol.6 (1), Article 18
Hauptverfasser: Jung, Philipp Alexander, Santos, Bernardo Ary dos, Bergermann, Dominik, Graulich, Tim, Lohmann, Maximilian, Novák, Andrzej, Öz, Erdem, Riahinia, Ali, Schmidt, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dielectric axion haloscopes, such as the Madmax experiment, are promising concepts for the direct search for dark matter axions. A reliable simulation is a fundamental requirement for the successful realisation of the experiments. Due to the complexity of the simulations, the demands on computing resources can quickly become prohibitive. In this paper, we show for the first time that modern deep learning techniques can be applied to aid the simulation and optimisation of dielectric haloscopes.
ISSN:2510-2036
2510-2044
DOI:10.1007/s41781-022-00091-5