Simulation of Dielectric Axion Haloscopes with Deep Neural Networks: A Proof-of-Principle
Dielectric axion haloscopes, such as the Madmax experiment, are promising concepts for the direct search for dark matter axions. A reliable simulation is a fundamental requirement for the successful realisation of the experiments. Due to the complexity of the simulations, the demands on computing re...
Gespeichert in:
Veröffentlicht in: | Computing and software for big science 2022-12, Vol.6 (1), Article 18 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dielectric axion haloscopes, such as the
Madmax
experiment, are promising concepts for the direct search for dark matter axions. A reliable simulation is a fundamental requirement for the successful realisation of the experiments. Due to the complexity of the simulations, the demands on computing resources can quickly become prohibitive. In this paper, we show for the first time that modern deep learning techniques can be applied to aid the simulation and optimisation of dielectric haloscopes. |
---|---|
ISSN: | 2510-2036 2510-2044 |
DOI: | 10.1007/s41781-022-00091-5 |