Generating and Refining Particle Detector Simulations Using the Wasserstein Distance in Adversarial Networks

We use adversarial network architectures together with the Wasserstein distance to generate or refine simulated detector data. The data reflect two-dimensional projections of spatially distributed signal patterns with a broad spectrum of applications. As an example, we use an observatory to detect c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing and software for big science 2018-11, Vol.2 (1), Article 4
Hauptverfasser: Erdmann, Martin, Geiger, Lukas, Glombitza, Jonas, Schmidt, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use adversarial network architectures together with the Wasserstein distance to generate or refine simulated detector data. The data reflect two-dimensional projections of spatially distributed signal patterns with a broad spectrum of applications. As an example, we use an observatory to detect cosmic ray-induced air showers with a ground-based array of particle detectors. First we investigate a method of generating detector patterns with variable signal strengths while constraining the primary particle energy. We then present a technique to refine simulated time traces of detectors to match corresponding data distributions. With this method we demonstrate that training a deep network with refined data-like signal traces leads to a more precise energy reconstruction of data events compared to training with the originally simulated traces.
ISSN:2510-2036
2510-2044
DOI:10.1007/s41781-018-0008-x