Uniqueness of meromorphic functions concerning their differential-difference operators

Suppose that f ( z ) is a nonconstant meromorphic function of hyper order strictly less than 1, c is a nonzero finite constant, a ,  b are distinct finite constants, and n ≥ 1 , k ≥ 0 are all integers. In this paper, we firstly prove one uniqueness theorem when f ( z ) and ( Δ c n f ( z ) ) ( k ) sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Analysis 2024, Vol.32 (5), p.2857-2878
Hauptverfasser: Wang, Miao-Hong, Chen, Jun-Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that f ( z ) is a nonconstant meromorphic function of hyper order strictly less than 1, c is a nonzero finite constant, a ,  b are distinct finite constants, and n ≥ 1 , k ≥ 0 are all integers. In this paper, we firstly prove one uniqueness theorem when f ( z ) and ( Δ c n f ( z ) ) ( k ) share a , ∞ CM and share b IM with additional conditions and give some further discussions. We also prove another uniqueness theorem when f ′ ( z ) and f ( z + c ) share ∞ CM and share a ,  b IM. Our main theorems generalize and improve many recent known results.
ISSN:0971-3611
2367-2501
DOI:10.1007/s41478-024-00773-w