Uniqueness of meromorphic functions concerning their differential-difference operators
Suppose that f ( z ) is a nonconstant meromorphic function of hyper order strictly less than 1, c is a nonzero finite constant, a , b are distinct finite constants, and n ≥ 1 , k ≥ 0 are all integers. In this paper, we firstly prove one uniqueness theorem when f ( z ) and ( Δ c n f ( z ) ) ( k ) sh...
Gespeichert in:
Veröffentlicht in: | The Journal of Analysis 2024, Vol.32 (5), p.2857-2878 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that
f
(
z
) is a nonconstant meromorphic function of hyper order strictly less than 1,
c
is a nonzero finite constant,
a
,
b
are distinct finite constants, and
n
≥
1
,
k
≥
0
are all integers. In this paper, we firstly prove one uniqueness theorem when
f
(
z
) and
(
Δ
c
n
f
(
z
)
)
(
k
)
share
a
,
∞
CM and share
b
IM with additional conditions and give some further discussions. We also prove another uniqueness theorem when
f
′
(
z
)
and
f
(
z
+
c
)
share
∞
CM and share
a
,
b
IM. Our main theorems generalize and improve many recent known results. |
---|---|
ISSN: | 0971-3611 2367-2501 |
DOI: | 10.1007/s41478-024-00773-w |