Highly coupled off-resonance lattice design in diffraction-limited light sources
The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weakening influences of intra-beam scattering in diffraction-limited synchrotron light sources. A round-beam generation method based on the global setting of skew quadrupoles and the ap...
Gespeichert in:
Veröffentlicht in: | Nuclear science and techniques 2024-09, Vol.35 (9), Article 163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weakening influences of intra-beam scattering in diffraction-limited synchrotron light sources. A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was proposed in this study. Two schemes, including large-emittance coupling introduced via betatron coupling and vertical dispersion, were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility. Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated. The results demonstrated that a precise coupling control ranging from 10 to 100% was achieved under low optical distortion, whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections. The Touschek lifetime increased by a factor of 2–2.5. |
---|---|
ISSN: | 1001-8042 2210-3147 |
DOI: | 10.1007/s41365-024-01511-4 |