Bayesian Estimation of Marshall Olkin Extended Inverse Weibull Distribution Using MCMC Approach

In this paper, we invoke a new prospective to discuss the estimation of a three-parameter Marshall Olkin extended inverse Weibull distribution based on Markov Chain Monte Carlo (MCMC) approach. The Bayes estimators under the squared error loss and LINEX loss functions are derived for three parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society for Probability and Statistics 2020-06, Vol.21 (1), p.247-257
Hauptverfasser: Okasha, Hassan M., El-Baz, A. H., Basheer, Abdulkareem M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we invoke a new prospective to discuss the estimation of a three-parameter Marshall Olkin extended inverse Weibull distribution based on Markov Chain Monte Carlo (MCMC) approach. The Bayes estimators under the squared error loss and LINEX loss functions are derived for three parameters. MCMC approach is applied to compute the Bayesian estimation of the unknown parameters. Using a real data application, it is shown that the superior performance of Bayesian estimation.
ISSN:2364-9569
2364-9569
DOI:10.1007/s41096-020-00082-y