DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation

The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photogrammetry, remote sensing and geoinformation science remote sensing and geoinformation science, 2024-04, Vol.92 (2), p.101-114
Hauptverfasser: Landgraf, Steven, Wursthorn, Kira, Hillemann, Markus, Ulrich, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation for semantic segmentation, which we call D eep U ncertainty D istillation using E nsembles for S egmentation (DUDES). DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012 dataset. With DUDES, we manage to simultaneously simplify and outperform previous work on Deep-Ensemble-based Uncertainty Distillation.
ISSN:2512-2789
2512-2819
DOI:10.1007/s41064-024-00280-4