Characterization of building derived materials for partial replacement of pavement subgrade layer

This study investigates the potential of BDM in its virgin state for enhancing the geotechnical and mechanical properties of soft non-swelling soil with low shear strength. A series of material and geotechnical tests carried out on soil replaced with different percentages of BDM include specific gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) 2018-12, Vol.3 (1), Article 78
Hauptverfasser: Suluguru, Ashok Kumar, Jayatheja, M., GuhaRay, Anasua, Kar, Arkamitra, Anand, Anurag
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the potential of BDM in its virgin state for enhancing the geotechnical and mechanical properties of soft non-swelling soil with low shear strength. A series of material and geotechnical tests carried out on soil replaced with different percentages of BDM include specific gravity, water absorption, standard Proctor’s test, permeability test, aggregate impact test (AIV), Los Angeles abrasion test, and large shear box test. The results indicated that an optimum of 18–23% of BDM by weight can be added to soil to improve its mechanical and geotechnical properties such as shear strength and compaction. This study also evaluates the compatibility of BDM in soils from sites surrounding chemical plants. For this purpose, the BDMs are exposed to sulfuric, hydrochloric, and nitric acid solutions to identify the effects of these acids on the BDM behavior. It is observed that the strength of BDM decreases after their exposure to these solutions, with maximum effect manifested by nitric acid and least by hydrochloric acid. The results of AIV and LA abrasion test on BDM exposed to chemicals show that the performance of the BDM deteriorates in the presence of chemicals. The results obtained from the proposed study can be used to promote the practical use of BDM in geotechnical applications. However, necessary precautions must be adopted for their practical application in ground improvement based on soil conditions.
ISSN:2364-4176
2364-4184
DOI:10.1007/s41062-018-0183-y