Easy-Mention: a model-driven mention recommendation heuristic to boost your tweet popularity

This paper investigates the role of mentions on tweet propagation. We propose a novel tweet propagation model SIR MF based on a multiplex network framework which allows to analyze the effects of mentioning on final retweet count. The basic bricks of this model are supported by a comprehensive study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Data Science and Analytics 2019-03, Vol.7 (2), p.131-147
Hauptverfasser: Pramanik, Soumajit, Sharma, Mohit, Danisch, Maximilien, Wang, Qinna, Guillaume, Jean-Loup, Mitra, Bivas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the role of mentions on tweet propagation. We propose a novel tweet propagation model SIR MF based on a multiplex network framework which allows to analyze the effects of mentioning on final retweet count. The basic bricks of this model are supported by a comprehensive study of multiple real datasets, and simulations of the model show a nice agreement with the empirically observed tweet popularity. Studies and experiments also reveal that follower count, retweet rate and profile similarity are important factors for gaining tweet popularity and allow to better understand the impact of the mention strategies on the retweet count. Interestingly, we experimentally identify a critical retweet rate regulating the role of mention on the tweet popularity. Finally, our data-driven simulations demonstrate that the proposed mention recommendation heuristic Easy-Mention outperforms the benchmark Whom-To-Mention algorithm.
ISSN:2364-415X
2364-4168
DOI:10.1007/s41060-018-0121-2