Cross-Gram Matrix Associated to Two Sequences in Hilbert Spaces
The conditions for sequences { f k } k = 1 ∞ and { g k } k = 1 ∞ being Bessel sequences, frames or Riesz bases, can be expressed in terms of the so-called cross-Gram matrix. In this paper, we investigate the cross-Gram operator G , associated to the sequence { ⟨ f k , g j ⟩ } j , k = 1 ∞ and suffici...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transaction A, Science Science, 2019-08, Vol.43 (4), p.1755-1760 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conditions for sequences
{
f
k
}
k
=
1
∞
and
{
g
k
}
k
=
1
∞
being Bessel sequences, frames or Riesz bases, can be expressed in terms of the so-called cross-Gram matrix. In this paper, we investigate the cross-Gram operator
G
, associated to the sequence
{
⟨
f
k
,
g
j
⟩
}
j
,
k
=
1
∞
and sufficient and necessary conditions for boundedness, invertibility, compactness and positivity of this operator are determined depending on the associated sequences. We show that invertibility of
G
is not possible when the associated sequences are frames but not Riesz Bases or at most one of them is Riesz basis. In the special case, we prove that
G
is a positive operator when
{
g
k
}
k
=
1
∞
is the canonical dual of
{
f
k
}
k
=
1
∞
. |
---|---|
ISSN: | 1028-6276 2364-1819 |
DOI: | 10.1007/s40995-018-0624-7 |