Cross-Gram Matrix Associated to Two Sequences in Hilbert Spaces

The conditions for sequences { f k } k = 1 ∞ and { g k } k = 1 ∞ being Bessel sequences, frames or Riesz bases, can be expressed in terms of the so-called cross-Gram matrix. In this paper, we investigate the cross-Gram operator G , associated to the sequence { ⟨ f k , g j ⟩ } j , k = 1 ∞ and suffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science and technology. Transaction A, Science Science, 2019-08, Vol.43 (4), p.1755-1760
Hauptverfasser: Osgooei, E., Rahimi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conditions for sequences { f k } k = 1 ∞ and { g k } k = 1 ∞ being Bessel sequences, frames or Riesz bases, can be expressed in terms of the so-called cross-Gram matrix. In this paper, we investigate the cross-Gram operator G , associated to the sequence { ⟨ f k , g j ⟩ } j , k = 1 ∞ and sufficient and necessary conditions for boundedness, invertibility, compactness and positivity of this operator are determined depending on the associated sequences. We show that invertibility of G is not possible when the associated sequences are frames but not Riesz Bases or at most one of them is Riesz basis. In the special case, we prove that G is a positive operator when { g k } k = 1 ∞ is the canonical dual of { f k } k = 1 ∞ .
ISSN:1028-6276
2364-1819
DOI:10.1007/s40995-018-0624-7