Transcendental nature of p-adic digamma values
For a fixed prime p , Murty and Saradha (Acta Arith 133:349–362, 2008) studied the transcendental nature of special values of the p -adic digamma function, denoted as ψ p ( r / p ) + γ p . This research was later extended by Chatterjee and Gun in 2014, who investigated the case of ψ p ( r / p n ) +...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2024-12, Vol.10 (4), Article 79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a fixed prime
p
, Murty and Saradha (Acta Arith 133:349–362, 2008) studied the transcendental nature of special values of the
p
-adic digamma function, denoted as
ψ
p
(
r
/
p
)
+
γ
p
. This research was later extended by Chatterjee and Gun in 2014, who investigated the case of
ψ
p
(
r
/
p
n
)
+
γ
p
, for any integer
n
>
1
. In this article, we generalize their results for distinct prime powers and explore the transcendental nature of the
p
-adic digamma values, with at most one exception. Further, we investigate the multiplicative independence of cyclotomic numbers satisfying certain conditions. Using this, we prove the transcendental nature of
p
-adic digamma values corresponding to
ψ
p
(
r
/
p
q
)
+
γ
p
, where
p
,
q
are distinct primes. |
---|---|
ISSN: | 2522-0160 2363-9555 |
DOI: | 10.1007/s40993-024-00570-1 |