Temperature profile and melt depth in laser powder bed fusion of Ti-6Al-4V titanium alloy
In this paper, the prediction of temperature profile and melt depth for laser powder bed fusion (L-PBF) of Ti-6Al-4V titanium powder material was performed by numerically solving the heat conduction-diffusion equation using a finite difference method. A review of the literature in numerical modeling...
Gespeichert in:
Veröffentlicht in: | Progress in additive manufacturing 2017-09, Vol.2 (3), p.169-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the prediction of temperature profile and melt depth for laser powder bed fusion (L-PBF) of Ti-6Al-4V titanium powder material was performed by numerically solving the heat conduction-diffusion equation using a finite difference method. A review of the literature in numerical modeling for laser-based additive metal manufacturing is presented. Initially, the temperature profile along the depth direction into the powder material is calculated for a stationary single pulse laser heat source to understand the transient behavior of the temperature rise during L-PBF. The effect of varying laser pulse energy, average power, and the powder material’s density is analyzed. A method to calculate and predict the maximum depth at which localized melting of the powder material occurs is provided. |
---|---|
ISSN: | 2363-9512 2363-9520 |
DOI: | 10.1007/s40964-017-0029-8 |