Surfaces in Non-flat 3-Space Forms Satisfying $$\square \vec {\textbf{H}}=\lambda \vec {\textbf{H}}
In this paper, we locally classify the surfaces immersed into the non-flat (Riemannian or Lorentzian) 3-space forms satisfying the condition $$\Box \vec {\textbf{H}}=\lambda \vec {\textbf{H}}$$ □ H → = λ H → for a real number $$\lambda $$ λ , where $$\vec {\textbf{H}}$$ H → is the mean curvature vec...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2023-11, Vol.46 (6), Article 185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we locally classify the surfaces immersed into the non-flat (Riemannian or Lorentzian) 3-space forms satisfying the condition
$$\Box \vec {\textbf{H}}=\lambda \vec {\textbf{H}}$$
□
H
→
=
λ
H
→
for a real number
$$\lambda $$
λ
, where
$$\vec {\textbf{H}}$$
H
→
is the mean curvature vector field and
$$\Box $$
□
denotes the Cheng–Yau operator of the surface. We obtain the classification result by proving, at a first step, that the mean curvature function must be constant and, in a second step, we complete the classification. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01575-2 |