Surfaces in Non-flat 3-Space Forms Satisfying $$\square \vec {\textbf{H}}=\lambda \vec {\textbf{H}}

In this paper, we locally classify the surfaces immersed into the non-flat (Riemannian or Lorentzian) 3-space forms satisfying the condition $$\Box \vec {\textbf{H}}=\lambda \vec {\textbf{H}}$$ □ H → = λ H → for a real number $$\lambda $$ λ , where $$\vec {\textbf{H}}$$ H → is the mean curvature vec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2023-11, Vol.46 (6), Article 185
Hauptverfasser: Alías, Luis J., García-Martínez, S. Carolina, Ramírez-Ospina, H. Fabián
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we locally classify the surfaces immersed into the non-flat (Riemannian or Lorentzian) 3-space forms satisfying the condition $$\Box \vec {\textbf{H}}=\lambda \vec {\textbf{H}}$$ □ H → = λ H → for a real number $$\lambda $$ λ , where $$\vec {\textbf{H}}$$ H → is the mean curvature vector field and $$\Box $$ □ denotes the Cheng–Yau operator of the surface. We obtain the classification result by proving, at a first step, that the mean curvature function must be constant and, in a second step, we complete the classification.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-023-01575-2