Doubling Transformations and Definite Integrals

A doubling transformation ψ ( x ) = x - λ - b x - μ , b , λ , μ ∈ R , b > 0 , has the property that for any absolutely integral function F ( x ) on R we have ∫ - ∞ ∞ F ( ψ ( x ) ) d x = ∫ - ∞ ∞ F ( x ) d x . Compositions of doubling transformations also satisfy this integral invariance property....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2015-03, Vol.1 (1), p.33-44
Hauptverfasser: Cochrane, Todd, Goldstein, Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A doubling transformation ψ ( x ) = x - λ - b x - μ , b , λ , μ ∈ R , b > 0 , has the property that for any absolutely integral function F ( x ) on R we have ∫ - ∞ ∞ F ( ψ ( x ) ) d x = ∫ - ∞ ∞ F ( x ) d x . Compositions of doubling transformations also satisfy this integral invariance property. In this paper we give criteria for determining when a given rational function is a composition of two or more doubling transformations, and use this criteria for giving explicit families of such transformations such as ( x - a ) ( x + a 2 ) ( x - a 3 ) ( x + a 4 ) x ( x - a 2 ) ( x + a 3 ) , for a > 1 ; ( x 2 - a 2 ) ( x 2 - a 8 ) x ( x + a 2 ) ( x - a 3 ) , for a > 1 ; and ( x 2 - a 2 ) ( x 2 - b 2 ) x ( x 2 - a b ) , for 0 < a < b .
ISSN:2349-5103
2199-5796
DOI:10.1007/s40819-014-0017-3