Wavelet estimation of a regression model with mixed noises
Chesneau et al. ( Journal of Computational and Applied Mathematics , 2020) study nonparametric wavelet estimations over L 2 risk of a regression model with additive and multiplicative noises. This paper considers convergence rates over L p ( 1 ≤ p < + ∞ ) risk of linear wavelet estimator and nonl...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2024-12, Vol.11 (4), Article 68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chesneau et al. (
Journal of Computational and Applied Mathematics
, 2020) study nonparametric wavelet estimations over
L
2
risk of a regression model with additive and multiplicative noises. This paper considers convergence rates over
L
p
(
1
≤
p
<
+
∞
)
risk of linear wavelet estimator and nonlinear wavelet estimator under some mild conditions. It turns out that our results reduce to the theorems of Chesneau et al., when
p
=
2
. |
---|---|
ISSN: | 2522-0144 2197-9847 |
DOI: | 10.1007/s40687-024-00481-8 |