Wavelet estimation of a regression model with mixed noises

Chesneau et al. ( Journal of Computational and Applied Mathematics , 2020) study nonparametric wavelet estimations over L 2 risk of a regression model with additive and multiplicative noises. This paper considers convergence rates over L p ( 1 ≤ p < + ∞ ) risk of linear wavelet estimator and nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2024-12, Vol.11 (4), Article 68
Hauptverfasser: Kou, Junke, Huang, Qinmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chesneau et al. ( Journal of Computational and Applied Mathematics , 2020) study nonparametric wavelet estimations over L 2 risk of a regression model with additive and multiplicative noises. This paper considers convergence rates over L p ( 1 ≤ p < + ∞ ) risk of linear wavelet estimator and nonlinear wavelet estimator under some mild conditions. It turns out that our results reduce to the theorems of Chesneau et al., when p = 2 .
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-024-00481-8