Optimal feedback control strategies for periodic delayed systems

In this study, three strategies based on infinite-dimensional Floquet theory, Chebyshev spectral collocation, and the Lyapunov–Floquet transformation (LFT) are proposed for optimal feedback control of linear time periodic delay differential equations using periodic control gains. First, a periodic-g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2014-03, Vol.2 (1), p.102-118
Hauptverfasser: Nazari, Morad, Butcher, Eric A., Bobrenkov, Oleg A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, three strategies based on infinite-dimensional Floquet theory, Chebyshev spectral collocation, and the Lyapunov–Floquet transformation (LFT) are proposed for optimal feedback control of linear time periodic delay differential equations using periodic control gains. First, a periodic-gain discrete-delayed feedback control is implemented where optimization of the control gains is included to obtain the minimum spectral radius of the closed-loop response. Second, a large set of ODEs is obtained using the Chebyshev spectral continuous time approximation, after which optimal (time-varying LQR) control is used to obtain a periodic-gain distributed-delayed feedback control. The third strategy involves the use of both CSCTA and the reduced LFT, along with either pole-placement or time-invariant LQR used on a linear time invariant auxiliary system, to obtain a periodic-gain non-delayed feedback control that asymptotically stabilizes the original system. The delayed Mathieu equation is used as an illustrative example for all three control strategies.
ISSN:2195-268X
2195-2698
DOI:10.1007/s40435-013-0053-6