Finite polynomial cohomology for general varieties
Nekovář and Nizioł (Syntomic cohomology and p-adic regulators for varieties over p-adic fields, 2013 ) have introduced in a version of syntomic cohomology valid for arbitrary varieties over p -adic fields. This uses a mapping cone construction similar to the rigid syntomic cohomology of (Besser, Isr...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2016-06, Vol.40 (1), p.203-220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nekovář and Nizioł (Syntomic cohomology and p-adic regulators for varieties over p-adic fields,
2013
) have introduced in a version of syntomic cohomology valid for arbitrary varieties over
p
-adic fields. This uses a mapping cone construction similar to the rigid syntomic cohomology of (Besser, Israel J Math 120(1):291–334,
2000
) in the good-reduction case, but with Hyodo–Kato (log-crystalline) cohomology in place of rigid cohomology. In this short note, we describe a cohomology theory which is a modification of the theory of Nekovář–Nizioł, modified by replacing
1
-
φ
with other polynomials in
φ
. This is the analogue for bad-reduction varieties of the finite-polynomial cohomology of (Besser, Invent Math 142(2):397–434,
2000
); and we use this cohomology theory to give formulae for
p
-adic regulator maps, extending the results of (Besser, Invent Math 142(2):397–434,
2000
; Besser, Israel J Math 120(1):335–360,
2000
; Besser, Israel J Math 190(1):29–66,
2012
) to varieties over
p
-adic fields, without assuming any good reduction hypotheses. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-015-0041-7 |