Finite polynomial cohomology for general varieties

Nekovář and Nizioł (Syntomic cohomology and p-adic regulators for varieties over p-adic fields, 2013 ) have introduced in a version of syntomic cohomology valid for arbitrary varieties over p -adic fields. This uses a mapping cone construction similar to the rigid syntomic cohomology of (Besser, Isr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathématiques du Québec 2016-06, Vol.40 (1), p.203-220
Hauptverfasser: Besser, Amnon, Loeffler, David, Zerbes, Sarah Livia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nekovář and Nizioł (Syntomic cohomology and p-adic regulators for varieties over p-adic fields, 2013 ) have introduced in a version of syntomic cohomology valid for arbitrary varieties over p -adic fields. This uses a mapping cone construction similar to the rigid syntomic cohomology of (Besser, Israel J Math 120(1):291–334, 2000 ) in the good-reduction case, but with Hyodo–Kato (log-crystalline) cohomology in place of rigid cohomology. In this short note, we describe a cohomology theory which is a modification of the theory of Nekovář–Nizioł, modified by replacing 1 - φ with other polynomials in φ . This is the analogue for bad-reduction varieties of the finite-polynomial cohomology of (Besser, Invent Math 142(2):397–434, 2000 ); and we use this cohomology theory to give formulae for p -adic regulator maps, extending the results of (Besser, Invent Math 142(2):397–434, 2000 ; Besser, Israel J Math 120(1):335–360, 2000 ; Besser, Israel J Math 190(1):29–66, 2012 ) to varieties over p -adic fields, without assuming any good reduction hypotheses.
ISSN:2195-4755
2195-4763
DOI:10.1007/s40316-015-0041-7