Factorisation de fonctions positives sur le tore: Applications à l’inverse des opérateurs de Toeplitz tronqués
We consider the class of positive bounded and lower semi-continuous functions defined on the torus T 2 . A factorisation theorem provides an equality f = g g ¯ where g has its spectrum in a given cone. Hence the notion of Λ -factorisation where Λ is a convex polygon. From such a factorisation we der...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2014-12, Vol.38 (2), p.189-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the class of positive bounded and lower semi-continuous functions defined on the torus
T
2
. A factorisation theorem provides an equality
f
=
g
g
¯
where
g
has its spectrum in a given cone. Hence the notion of
Λ
-factorisation where
Λ
is a convex polygon. From such a factorisation we derive an inversion formula for the truncated Toeplitz operator
T
Λ
(
f
)
. These results are applied to obtain a trace theorem for
T
Λ
(
f
)
-
1
if
Λ
is a triangle. The trace is related to geometric properties of the triangle. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-014-0019-x |