Generalized Hurwitz Matrices, Generalized Euclidean Algorithm, and Forbidden Sectors of the Complex Plane

Given a polynomial f ( x ) = a 0 x n + a 1 x n - 1 + ⋯ + a n with positive coefficients a k , and a positive integer M ≤ n , we define an infinite generalized Hurwitz matrix H M ( f ) : = ( a M j - i ) i , j . We prove that the polynomial f ( z ) does not vanish in the sector z ∈ C : | arg ( z ) | &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2016-09, Vol.16 (3), p.395-431
Hauptverfasser: Holtz, Olga, Khrushchev, Sergey, Kushel, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a polynomial f ( x ) = a 0 x n + a 1 x n - 1 + ⋯ + a n with positive coefficients a k , and a positive integer M ≤ n , we define an infinite generalized Hurwitz matrix H M ( f ) : = ( a M j - i ) i , j . We prove that the polynomial f ( z ) does not vanish in the sector z ∈ C : | arg ( z ) | < π M whenever the matrix H M is totally non-negative. This result generalizes the classical Hurwitz’ Theorem on stable polynomials ( M = 2 ), the Aissen–Edrei–Schoenberg–Whitney theorem on polynomials with negative real roots ( M = 1 ), and the Cowling–Thron theorem ( M = n ). In this connection, we also develop a generalization of the classical Euclidean algorithm, of independent interest per se.
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-016-0156-0