Generalized Hurwitz Matrices, Generalized Euclidean Algorithm, and Forbidden Sectors of the Complex Plane
Given a polynomial f ( x ) = a 0 x n + a 1 x n - 1 + ⋯ + a n with positive coefficients a k , and a positive integer M ≤ n , we define an infinite generalized Hurwitz matrix H M ( f ) : = ( a M j - i ) i , j . We prove that the polynomial f ( z ) does not vanish in the sector z ∈ C : | arg ( z ) | &...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2016-09, Vol.16 (3), p.395-431 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a polynomial
f
(
x
)
=
a
0
x
n
+
a
1
x
n
-
1
+
⋯
+
a
n
with positive coefficients
a
k
, and a positive integer
M
≤
n
, we define an infinite generalized Hurwitz matrix
H
M
(
f
)
:
=
(
a
M
j
-
i
)
i
,
j
. We prove that the polynomial
f
(
z
) does not vanish in the sector
z
∈
C
:
|
arg
(
z
)
|
<
π
M
whenever the matrix
H
M
is totally non-negative. This result generalizes the classical Hurwitz’ Theorem on stable polynomials (
M
=
2
), the Aissen–Edrei–Schoenberg–Whitney theorem on polynomials with negative real roots (
M
=
1
), and the Cowling–Thron theorem (
M
=
n
). In this connection, we also develop a generalization of the classical Euclidean algorithm, of independent interest per se. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-016-0156-0 |