On the least eigenvalues of unbalanced signed bicyclic graphs with given girth

Let G ˙ be a signed graph and A ( G ˙ ) be its adjacency matrix. The eigenvalues of G ˙ are actually the eigenvalues of A ( G ˙ ) , and the girth of G ˙ is the length of a shortest cycle in G ˙ . We use B ( n , g ) to denote the set of unbalanced signed bicyclic graphs on n vertices with girth g . I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2024-10, Vol.43 (7), Article 406
Hauptverfasser: Li, Dan, Teng, Zhaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G ˙ be a signed graph and A ( G ˙ ) be its adjacency matrix. The eigenvalues of G ˙ are actually the eigenvalues of A ( G ˙ ) , and the girth of G ˙ is the length of a shortest cycle in G ˙ . We use B ( n , g ) to denote the set of unbalanced signed bicyclic graphs on n vertices with girth g . In this paper, we focus on the least eigenvalues of signed graphs in B ( n , g ) and accordingly determine the extremal signed graph which achieves the minimal least eigenvalue.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-024-02923-z