On the least eigenvalues of unbalanced signed bicyclic graphs with given girth
Let G ˙ be a signed graph and A ( G ˙ ) be its adjacency matrix. The eigenvalues of G ˙ are actually the eigenvalues of A ( G ˙ ) , and the girth of G ˙ is the length of a shortest cycle in G ˙ . We use B ( n , g ) to denote the set of unbalanced signed bicyclic graphs on n vertices with girth g . I...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2024-10, Vol.43 (7), Article 406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
˙
be a signed graph and
A
(
G
˙
)
be its adjacency matrix. The eigenvalues of
G
˙
are actually the eigenvalues of
A
(
G
˙
)
, and the girth of
G
˙
is the length of a shortest cycle in
G
˙
. We use
B
(
n
,
g
)
to denote the set of unbalanced signed bicyclic graphs on
n
vertices with girth
g
. In this paper, we focus on the least eigenvalues of signed graphs in
B
(
n
,
g
)
and accordingly determine the extremal signed graph which achieves the minimal least eigenvalue. |
---|---|
ISSN: | 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-024-02923-z |