The divergence of the barycentric Padé interpolants

We explain that, like the usual Padé approximants, the barycentric Padé approximants proposed recently by Brezinski and Redivo-Zaglia can diverge. More precisely, we show that for every polynomial P z there exists a function g z = ∑ n = 0 ∞ c n z n , with c n arbitrarily small, such that the sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and Applied Mathematics 2015-10, Vol.34 (3), p.819-830
1. Verfasser: Mascarenhas, Walter F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explain that, like the usual Padé approximants, the barycentric Padé approximants proposed recently by Brezinski and Redivo-Zaglia can diverge. More precisely, we show that for every polynomial P z there exists a function g z = ∑ n = 0 ∞ c n z n , with c n arbitrarily small, such that the sequence of barycentric Padé approximants of f z = P z + g z does not converge uniformly in any subset of C with a non-empty interior.
ISSN:0101-8205
1807-0302
DOI:10.1007/s40314-014-0144-9