The divergence of the barycentric Padé interpolants
We explain that, like the usual Padé approximants, the barycentric Padé approximants proposed recently by Brezinski and Redivo-Zaglia can diverge. More precisely, we show that for every polynomial P z there exists a function g z = ∑ n = 0 ∞ c n z n , with c n arbitrarily small, such that the sequenc...
Gespeichert in:
Veröffentlicht in: | Computational and Applied Mathematics 2015-10, Vol.34 (3), p.819-830 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explain that, like the usual Padé approximants, the barycentric Padé approximants proposed recently by Brezinski and Redivo-Zaglia can diverge. More precisely, we show that for every polynomial
P
z
there exists a function
g
z
=
∑
n
=
0
∞
c
n
z
n
, with
c
n
arbitrarily small, such that the sequence of barycentric Padé approximants of
f
z
=
P
z
+
g
z
does not converge uniformly in any subset of
C
with a non-empty interior. |
---|---|
ISSN: | 0101-8205 1807-0302 |
DOI: | 10.1007/s40314-014-0144-9 |