Maximal Families of Calabi–Yau Manifolds with Minimal Length Yukawa Coupling
For each natural odd number n ≥3, we exhibit a maximal family of n -dimensional Calabi–Yau manifolds whose Yukawa coupling length is 1. As a consequence, Shafarevich’s conjecture holds true for these families. Moreover, it follows from Deligne and Mostow (Publ. Math. IHÉS, 63:5–89, 1986 ) and Mostow...
Gespeichert in:
Veröffentlicht in: | Communications in mathematics and statistics 2013-03, Vol.1 (1), p.73-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For each natural odd number
n
≥3, we exhibit a maximal family of
n
-dimensional Calabi–Yau manifolds whose Yukawa coupling length is 1. As a consequence, Shafarevich’s conjecture holds true for these families. Moreover, it follows from Deligne and Mostow (Publ. Math. IHÉS, 63:5–89,
1986
) and Mostow (Publ. Math. IHÉS, 63:91–106,
1986
; J. Am. Math. Soc., 1(3):555–586,
1988
) that, for
n
=3, it can be partially compactified to a Shimura family of ball type, and for
n
=5,9, there is a sub
-PVHS of the family uniformizing a Zariski open subset of an arithmetic ball quotient. |
---|---|
ISSN: | 2194-6701 2194-671X |
DOI: | 10.1007/s40304-013-0006-6 |