Structural and Morphological Modulation of BiOCl Visible-light Photocatalyst Prepared via an In situ Oxidation Synthesis
The evolution of morphology and heterostructure of BiOCl was investigated during an in situ oxidation reaction. Morphology and structure transformation of regular 2D nanoflake, 0D nanosphere or 3D nanoflower was achieved by adjusting the ratio of reagent concentration or reaction temperature, respec...
Gespeichert in:
Veröffentlicht in: | Chemical research in Chinese universities 2016-06, Vol.32 (3), p.338-342 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolution of morphology and heterostructure of BiOCl was investigated during an in situ oxidation reaction. Morphology and structure transformation of regular 2D nanoflake, 0D nanosphere or 3D nanoflower was achieved by adjusting the ratio of reagent concentration or reaction temperature, respectively. The enhanced photocatalytic degradation ability and the photocurrent intensity of BiOCl nanomaterials may be attributed to the improved degree of crystallinity and the formation of Bi/BiOCI heterostructure. The photocurrent density of Schottky battery was increased due to enhancing the optical pathway and assisting during charge separation. Crystallinity also contributed to the improvement of the photoelectric conversion efficiency and reduction of the recombination rate of photogenerated electron-hole pairs. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-016-5397-y |