Some properties on $$\mathrm{IA_Z}$$-automorphisms of groups

Let G be a group and $$\mathrm{IA}(G)$$ IA ( G ) denote the group of all automorphisms of G , which induce identity map on the abelianized group $$G_{ab}=G/G'$$ G ab = G / G ′ . Also the group of those $$\mathrm{IA}$$ IA -automorphisms which fix the centre element-wise is denoted by $$\mathrm{I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of mathematics 2020-12, Vol.9 (3), p.691-695
Hauptverfasser: Taheri, Hamid, Moghaddam, Mohammd Reza R., Rostamyari, Mohammad Amin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a group and $$\mathrm{IA}(G)$$ IA ( G ) denote the group of all automorphisms of G , which induce identity map on the abelianized group $$G_{ab}=G/G'$$ G ab = G / G ′ . Also the group of those $$\mathrm{IA}$$ IA -automorphisms which fix the centre element-wise is denoted by $$\mathrm{IA_Z}(G)$$ IA Z ( G ) . In the present article, among other results and under some condition we prove that the derived subgroups of finite p -groups, for which $$\mathrm{IA_Z}$$ IA Z -automorphisms are the same as central automorphisms, are either cyclic or elementary abelian.
ISSN:2193-5343
2193-5351
DOI:10.1007/s40065-019-0254-8