Some properties on $$\mathrm{IA_Z}$$-automorphisms of groups
Let G be a group and $$\mathrm{IA}(G)$$ IA ( G ) denote the group of all automorphisms of G , which induce identity map on the abelianized group $$G_{ab}=G/G'$$ G ab = G / G ′ . Also the group of those $$\mathrm{IA}$$ IA -automorphisms which fix the centre element-wise is denoted by $$\mathrm{I...
Gespeichert in:
Veröffentlicht in: | Arabian journal of mathematics 2020-12, Vol.9 (3), p.691-695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a group and
$$\mathrm{IA}(G)$$
IA
(
G
)
denote the group of all automorphisms of
G
, which induce identity map on the abelianized group
$$G_{ab}=G/G'$$
G
ab
=
G
/
G
′
. Also the group of those
$$\mathrm{IA}$$
IA
-automorphisms which fix the centre element-wise is denoted by
$$\mathrm{IA_Z}(G)$$
IA
Z
(
G
)
. In the present article, among other results and under some condition we prove that the derived subgroups of finite
p
-groups, for which
$$\mathrm{IA_Z}$$
IA
Z
-automorphisms are the same as central automorphisms, are either cyclic or elementary abelian. |
---|---|
ISSN: | 2193-5343 2193-5351 |
DOI: | 10.1007/s40065-019-0254-8 |